Unlimited Sampling Theorem Based on Fractional Fourier Transform

Author:

Zhao Hui12,Li Bing-Zhao12ORCID

Affiliation:

1. School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

2. Beijing Key Laboratory on MCAACI, Beijing Institute of Technology, Beijing 100081, China

Abstract

The recovery of bandlimited signals with high dynamic range is a hot issue in sampling research. The unlimited sampling theory expands the recordable range of traditional analog-to-digital converters (ADCs) arbitrarily, and the signal is folded back into a low dynamic range measurement, avoiding the saturation problem. Since the non-bandlimited signal in the Fourier domain cannot be directly applied to its existing theory, the non-bandlimited signal in the Fourier domain may be bandlimited in the fractional Fourier domain. Therefore, this brief report studies the unlimited sampling problem of high dynamic non-bandlimited signals in the Fourier domain based on the fractional Fourier transform. Firstly, a mathematical signal model for unlimited sampling is proposed. Secondly, based on this mathematical model, the annihilation filtering method is used to estimate the arbitrary folding time. Finally, a novel fractional Fourier domain unlimited sampling theorem is obtained. The theory proves that, based on the folding characteristics of the self-reset ADC, the number of samples is not affected by the modulo threshold, and any folding time can be handled.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3