A Preconditioned Iterative Method for a Multi-State Time-Fractional Linear Complementary Problem in Option Pricing

Author:

Chen Xu12,Gong Xinxin1,Lei Siu-Long3,Sun Youfa1

Affiliation:

1. School of Economics, Guangdong University of Technology, Guangzhou 510520, China

2. Key Laboratory of Digital Economy and Data Governance, Guangdong University of Technology, Guangzhou 510520, China

3. Department of Mathematics, University of Macau, Macau

Abstract

Fractional derivatives and regime-switching models are widely used in various fields of finance because they can describe the nonlocal properties of the solutions and the changes in the market status, respectively. The regime-switching time-fractional diffusion equations that combine both advantages are also used in European option pricing; however, to our knowledge, American option pricing based on such models and their numerical methods is yet to be studied. Hence, a fast algorithm for solving the multi-state time-fractional linear complementary problem arising from the regime-switching time-fractional American option pricing models is developed in this paper. To construct the solution strategy, the original problem has been converted into a Hamilton–Jacobi–Bellman equation, and a nonlinear finite difference scheme has been proposed to discretize the problem with stability analysis. A policy-Krylov subspace method is developed to solve the nonlinear scheme. Further, to accelerate the convergence rate of the Krylov method, a tri-diagonal preconditioner is proposed with condition number analysis. Numerical experiments are presented to demonstrate the validity of the proposed nonlinear scheme and the efficiency of the proposed preconditioned policy-Krylov subspace method.

Funder

Guangdong Basic and Applied Basic Foundation

National Natural Science Foundation of China

University of Macau

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3