Tool Degradation Prediction Based on Semimartingale Approximation of Linear Fractional Alpha-Stable Motion and Multi-Feature Fusion

Author:

Yuan Yuchen1,Chen Jianxue1,Rong Jin2,Cattani Piercarlo3,Kudreyko Aleksey4ORCID,Villecco Francesco5ORCID

Affiliation:

1. School of Electronic & Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China

2. College of Information Management, Minnan University of Science and Technology, Quanzhou 362700, China

3. Department of Computer, Control and Management Engineering, University of Rome La Sapienza, Via Ariosto 25, 00185 Roma, Italy

4. Department of Medical Physics and Informatics, Bashkir State Medical University, Lenina 3, 450008 Ufa, Russia

5. Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy

Abstract

Tool wear will reduce workpieces’ quality and accuracy. In this paper, the vibration signals of the milling process were analyzed, and it was found that historical fluctuations still have an impact on the existing state. First of all, the linear fractional alpha-stable motion (LFSM) was investigated, along with a differential iterative model with it as the noise term is constructed according to the fractional-order Ito formula; the general solution of this model is derived by semimartingale approximation. After that, for the chaotic features of the vibration signal, the time-frequency domain characteristics were extracted using principal component analysis (PCA), and the relationship between the variation of the generalized Hurst exponent and tool wear was established using multifractal detrended fluctuation analysis (MDFA). Then, the maximum prediction length was obtained by the maximum Lyapunov exponent (MLE), which allows for analysis of the vibration signal. Finally, tool condition diagnosis was carried out by the evolving connectionist system (ECoS). The results show that the LFSM iterative model with semimartingale approximation combined with PCA and MDFA are effective for the prediction of vibration trends and tool condition. Further, the monitoring of tool condition using ECoS is also effective.

Funder

the Bashkir State Medical University Strategic Academic Leadership Program

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3