Robust Consensus Analysis in Fractional-Order Nonlinear Leader-Following Systems with Delays: Incorporating Practical Controller Design and Nonlinear Dynamics

Author:

Khan Asad1ORCID,Javeed Muhammad Awais2,Niazi Azmat Ullah Khan3ORCID,Rehman Saadia3,Zhong Yubin4

Affiliation:

1. Metaverse Research Institute, School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China

2. School of Transportation, Southeast University, Nanjing 211189, China

3. Department of Mathematics and Statistics, The University of Lahore, Sargodha 40100, Pakistan

4. School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China

Abstract

This article investigates the resilient-based consensus analysis of fractional-order nonlinear leader-following systems with distributed and input lags. To enhance the practicality of the controller design, an incorporation of a disturbance term is proposed. Our modeling framework provides a more precise and flexible approach that considers the memory and heredity aspects of agent dynamics through the utilization of fractional calculus. Furthermore, the leader and follower equations of the system incorporate nonlinear functions to explore the resulting changes. The leader-following system is expressed by a weighted graph, which can be either undirected or directed. Analyzed using algebraic graph theory and the fractional-order Razumikhin technique, the case of leader-following consensus is presented algebraically. To increase robustness in multi-agent systems, input and distributive delays are used to accommodate communication delays and replicate real-time varying environments. This study lays the groundwork for developing control methods that are more robust and flexible in complex networked systems. It does so by advancing our understanding and practical application of fractional-order multi-agent systems. Additionally, experiments were conducted to show the effectiveness of the design in achieving consensus within the system.

Funder

Key Laboratory of Philosophy and Social Sciences in Guangdong Province of Maritime Silk Road of Guangzhou University

National Natural Science Foundation of China

Ministry of Science and Technology of China

Publisher

MDPI AG

Reference31 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3