PQMLE and Generalized F-Test of Random Effects Semiparametric Model with Serially and Spatially Correlated Nonseparable Error

Author:

Li Shuangshuang1,Chen Jianbao2,Chen Danqing3

Affiliation:

1. School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471000, China

2. School of Mathematics and Statistics & Fujian Provincial Key Laboratory of Statistics and Artificial Intelligence, Fujian Normal University, Fuzhou 350117, China

3. School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350117, China

Abstract

Semiparametric panel data models are powerful tools for analyzing data with complex characteristics such as linearity and nonlinearity of covariates. This study aims to investigate the estimation and testing of a random effects semiparametric model (RESPM) with serially and spatially correlated nonseparable error, utilizing a combination of profile quasi-maximum likelihood estimation and local linear approximation. Profile quasi-maximum likelihood estimators (PQMLEs) for unknowns and a generalized F-test statistic FNT are built to determine the beingness of nonlinear relationships. The asymptotic properties of PQMLEs and FNT are proven under regular assumptions. The Monte Carlo results imply that the PQMLEs and FNT performances are excellent on finite samples; however, missing the spatially and serially correlated error leads to estimator inefficiency and bias. Indonesian rice-farming data is used to illustrate the proposed approach, and indicates that landarea exhibits a significant nonlinear relationship with riceyield, in addition, high-yieldvarieties, mixed-yieldvarieties, and seedweight have significant positive impacts on rice yield.

Funder

National Social Science Fund of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3