Strength and Fractal Characteristics of Artificial Frozen–Thawed Sandy Soft Soil

Author:

Kong Bowen12,Yan Yuntian1ORCID,He Huan1,Yu Jing2,Zou Baoping13,Chen Qizhi13ORCID

Affiliation:

1. School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou 310023, China

2. Department of Civil Engineering, Hangzhou City University, Hangzhou 310015, China

3. Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China

Abstract

In regions with sandy soft soil strata, the subway foundation commonly undergoes freeze–thaw cycles during construction. This study focuses on analyzing the microstructural and fractal characteristics of frozen–thawed sandy soft soil to improve our understanding of its strength behavior and stability. Pore size distribution curves before and after freeze–thaw cycles were examined using nuclear magnetic resonance technology. Additionally, fractal theory was applied to illustrate the soil’s fractal properties. The strength properties of frozen remolded clay under varying freezing temperatures and sand contents were investigated through uniaxial compression tests, indicating that soil strength is significantly influenced by fractal dimensions. The findings suggest that lower freezing temperatures lead to a more dispersed soil skeleton, resulting in a higher fractal dimension for the frozen–thawed soil. Likewise, an increase in sand content enlarges the soil pores and the fractal dimension of the frozen–thawed soil. Furthermore, an increase in fractal dimension caused by freezing temperatures results in increased soil strength, while an increase in fractal dimension due to changes in sand content leads to a decrease in soil strength.

Funder

Zhejiang Provincial Natural Science Foundation of China

Youth Natural Science Foundation of Zhejiang University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3