Effect of Heterogeneity on the Extension of Ubiquitiformal Cracks in Rock Materials

Author:

Yang Beibei,Cao XiaoshanORCID,Han Tielin,Li Panfeng,Shi JunpingORCID

Abstract

Fracture energy, as an important characteristic parameter of the fracture properties of materials, has been extensively studied by scholars. However, less research has been carried out on ubiquitiformal fracture energy and the main method used by scholars is the uniaxial tensile test. In this paper, based on previous research, the first Brazilian splitting test was used to study the ubiquitiformal crack extension of slate and granite, and the complexity and ubiquitiformal fracture energy of rock material were obtained. The heterogeneity of the material was then characterized by the Weibull statistical distribution, and the cohesive model is applied to the ABAQUS numerical software to simulate the effect of heterogeneity on the characteristics of ubiquitiformal cracks. The results demonstrate that the ubiquitiformal complexity of slate ranges from 1.54 to 1.60, and that of granite ranges from 1.58 to 1.62. The mean squared deviations of the slate and granite ubiquitiformal fracture energy are the smallest compared with the other fracture energies, which are 0.038 and 0.037, respectively. When the homogeneity of the heterogeneous model is less than 1.5, its heterogeneity has a greater influence on the Brazilian splitting strength, and the heterogeneity of the rock is obvious. However, when the homogeneity is greater than five, the effect on the Brazilian splitting strength is much less, and the Brazilian splitting strength tends to be the average strength. Therefore, it is particularly important to study the fracture problem of cracks from the nature of the material structure by combining the macroscopic and mesoscopic views through the ubiquitiform theory.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3