Abstract
The Black–Scholes option pricing model is one of the most significant achievements in modern investment science. However, many factors are constantly fluctuating in the actual financial market option pricing, such as risk-free interest rate, stock price, option underlying price, and security price volatility may be inaccurate in the real world. Therefore, it is of great practical significance to study the fractional fuzzy option pricing model. In this paper, we proposed a reliable approximation method, the Elzaki transform homotopy perturbation method (ETHPM) based on granular differentiability, to solve the fuzzy time-fractional Black–Scholes European option pricing equations. Firstly, the fuzzy function is converted to a real number function based on the horizontal membership function (HMF). Secondly, the specific steps of the ETHPM are given to solve the fuzzy time-fractional Black–Scholes European option pricing equations. Finally, some examples demonstrate that the new approach is simple, efficient, and accurate. In addition, the fuzzy approximation solutions have been visualized at the end of this paper.
Funder
Shaanxi Provincial Key Research and Development Program
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献