Author:
Wang Zi-Qiang,Liu Qin,Cao Jun-Ying
Abstract
In this paper, based on the modified block-by-block method, we propose a higher-order numerical scheme for two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. This approach involves discretizing the domain into a large number of subdomains and using biquadratic Lagrangian interpolation on each subdomain. The convergence of the high-order numerical scheme is rigorously established. We prove that the numerical solution converges to the exact solution with the optimal convergence order O(hx4−α+hy4−β) for 0<α,β<1. Finally, experiments with four numerical examples are shown, to support the theoretical findings and to illustrate the efficiency of our proposed method.
Funder
National Natural Science Foundation of China
Foundation of Guizhou Science and Technology Department
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献