A New Fifth-Order Finite Difference Compact Reconstruction Unequal-Sized WENO Scheme for Fractional Differential Equations

Author:

Zhang Yan,Zhu Jun

Abstract

This paper designs a new finite difference compact reconstruction unequal-sized weighted essentially nonoscillatory scheme (CRUS-WENO) for solving fractional differential equations containing the fractional Laplacian operator. This new CRUS-WENO scheme uses stencils of different sizes to achieve fifth-order accuracy in smooth regions and maintain nonoscillatory properties near discontinuities. The fractional Laplacian operator of order β(0<β<1) is split into the integral part and the first derivative term. Using the Gauss–Jacobi quadrature method to solve the integral part of the fractional Laplacian operators, a new finite difference CRUS-WENO scheme is presented to discretize the first derivative term of the fractional equation. This new CRUS-WENO scheme has the advantages of a narrower large stencil and high spectral resolution. In addition, the linear weights of the new CRUS-WENO scheme can be any positive numbers whose sum is one, which greatly reduces the calculation cost. Some numerical examples are given to show the effectiveness and feasibility of this new CRUS-WENO scheme in solving fractional equations containing the fractional Laplacian operator.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3