Abstract
Plant leaf surfaces can contain interesting, reproducible spatial patterns that can be used for several industrial purposes. In this paper, the main goal was to analyze the surface microtexture of Amazon Anacardium occidentale L. using multifractal theory. AFM images were used to evaluate the multifractal spatial surface patterns of the adaxial and abaxial sides of the leaf. The 3D maps revealed that the abaxial side is dominated by stomach cells, while striated structures were observed on the adaxial side. The surface of the abaxial side is rougher than the adaxial side. The autocorrelation function calculations showed that the abaxial side has an isotropic surface compared to the adaxial side. Despite this, Minkowski functionals demonstrated that the morphological spatial patterns have robust statistical similarity. Both sides exhibit multifractal behavior, which was verified by the trend observed in the mass exponent and generalized dimension. However, the adaxial side exhibits stronger multifractality and increased vertical complexity compared to the abaxial side. Our findings show that the multifractal spatial patterns of the leaf surface depend on the rough dynamics of the topographic profile. The identification of the multifractal patterns of the structures present on the surface of plant leaves is useful for the fabrication of leaf-architecture-based materials.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献