Effect of Magnetic Field with Parabolic Motion on Fractional Second Grade Fluid

Author:

Iftikhar NazishORCID,Riaz Muhammad BilalORCID,Awrejcewicz JanORCID,Akgül AliORCID

Abstract

This paper is an analysis of the flow of magnetohydrodynamics (MHD) second grade fluid (SGF) under the influence of chemical reaction, heat generation/absorption, ramped temperature and concentration and thermodiffusion. The fluid was made to flow through a porous medium. It has been proven in many already-published articles that heat and mass transfer do not always follow the classical mechanics process that is known as memoryless process. Therefore, the model using classical differentiation based on the rate of change cannot really replicate such a dynamical process very accurately; thus, a different concept of differentiation is needed to capture such a process. Very recently, new classes of differential operators were introduced and have been recognized to be efficient in capturing processes following the power law, the decay law and the crossover behaviors. For the study of heat and mass transfer, we applied the newly introduced differential operators to model such flow. The equations for heat, mass and momentum are established in the terms of Caputo (C), Caputo–Fabrizio (CF) and Atangana–Baleanu in Caputo sense (ABC) fractional derivatives. The Laplace transform, inversion algorithm and convolution theorem were used to derive the exact and semi-analytical solutions for all cases. The obtained analytical solutions were plotted for different values of existing parameters. It is concluded that the fluid velocity shows increasing behavior for κ, Gr and Gm, while velocity decreases for Pr and M. For Kr, both velocity and concentration curves show decreasing behavior. Fluid flow accelerates under the influence of Sr and R. Temperature and concentration profiles increase for Sr and R. Moreover, the ABC fractional operator presents a larger memory effect than C and CF fractional operators.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3