Abstract
In this paper, a new approach to find exact solutions is carried out for a generalized unsteady magnetohydrodynamic transport of a rate-type fluid near an unbounded upright plate, which is analyzed for ramped-wall temperature and velocity with constant concentration. The vertical plate is suspended in a porous medium and encounters the effects of radiation. An innovative definition of the time-fractional operator in power-law-kernel form is implemented to hypothesize the constitutive mass, energy, and momentum equations. The Laplace integral transformation technique is applied on a dimensionless form of governing partial differential equations by introducing some non-dimensional suitable parameters to establish the exact expressions in terms of special functions for ramped velocity, temperature, and constant-concentration fields. In order to validate the problem, the absence of the mass Grashof parameter led to the investigated solutions obtaining good agreement in existing literature. Additionally, several system parameters were used, such as as magnetic value M, Prandtl value Pr, Maxwell parameter λ, dimensionless time τ, Schmidt number “Sc”, fractional parameter α, andMass and Thermal Grashof numbers Gm and Gr, respectively, to examine their impacts on velocity, wall temperature, and constant concentration. Results are also discussed in detail and demonstrated graphically via Mathcad-15 software. A comprehensive comparative study between fractional and non-fractional models describes that the fractional model elucidate the memory effects more efficiently.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Reference58 articles.
1. IV. On the dynamical theory of gases;Maxwell;Philos. Trans. R. Soc. Lond.,1867
2. On a new exact solution to Stokes’ first problem for Maxwell fluids
3. A note on the second problem of Stokes for Maxwell fluids
4. A new exact solution for the flow of a Maxwell fluid past an infinite plate
5. Analysis for MHD flow of a Maxwell fluid past a vertical stretching sheet in the presence of thermophoresis and chemical reaction;Noor;World Acad. Sci. Eng. Technol.,2012
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献