Between 2D and 3D: Studying Structural Complexity of Urban Fabric Using Voxels and LiDAR-Derived DSMs

Author:

Tara AtaORCID,Patuano AgnèsORCID,Lawson GillianORCID

Abstract

Cities are complex systems and their physical forms are the manifestation of cultural, social and economic processes shaped by the geometry of natural and man-made elements. Digital Surface Models (DSM) using LiDAR provide an efficient volumetric transformation of urban fabric including all built and natural elements which allows the study of urban complexity through the lens of fractal dimension (D). Founded on the “box-counting” method, we reveal a voxelization technique developed in GIS (Geographic Information System) to estimate D values of ten DSM samples across central Melbourne. Estimated D values of surface models (between 2 and 3) provide a measure to interpret the structural complexity of different urban characters defined by the pattern of developments and densities. The correlations between D values with other DSM properties such as elevation, volume, solar radiation and surface roughness, showed a strong relationship between DSM volume and mean elevation. Lower strength correlations were recorded with solar radiation and surface roughness. The proposed method provides opportunities for fractal research to study pressing issues in complex urban environments such as declining physical fitness, mental health and urban biodiversity.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference74 articles.

1. Fractal Cities—A Geometry of Form and Function;Batty,1994

2. Using fractal analysis to compare the characteristic complexity of nature and architecture: re-examining the evidence

3. The Fractal Geometry of Nature, Henry Holt and Company;Mandelbrot,1982

4. Measurement of DEM roughness using the local fractal dimension

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3