Abstract
Fractional-order boundary value problems are used to model certain phenomena in chemistry, physics, biology, and engineering. However, some of these models do not meet the existence and uniqueness required in the mainstream of mathematical processes. Therefore, in this paper, the existence, stability, and uniqueness for the solution of the coupled system of the Caputo-type sequential fractional differential equation, involving integral boundary conditions, was discussed, and investigated. Leray–Schauder’s alternative was applied to derive the existence of the solution, while Banach’s contraction principle was used to examine the uniqueness of the solution. Moreover, Ulam–Hyers stability of the presented system was investigated. It was found that the theoretical-related aspects (existence, uniqueness, and stability) that were examined for the governing system were satisfactory. Finally, an example was given to illustrate and examine certain related aspects.
Subject
Statistics and Probability,Statistical and Nonlinear Physics,Analysis
Reference28 articles.
1. Fractional Differential Equations;Podlubny,1999
2. Theory and Applications of Fractional Differential Equations;Kilbas,2006
3. An Introduction to the Fractional Calculus and Fractional Differential Equations;Miller,1993
4. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering,2007
5. On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献