Simple Graphical Prediction of Relative Permeability of Unsaturated Soils under Deformations

Author:

Tao GaoliangORCID,Wang Qing,Chen Qingsheng,Nimbalkar SanjayORCID,Peng Yinjie,Dong Heming

Abstract

At present, there are only a few existing models that can be used to predict the relative permeability of unsaturated soil under deformations, and the calculation process is relatively complex. In order to fit the measured value of the relative permeability coefficient of unsaturated soil before deformation, this work employs the simplified unified model of the relative permeability coefficient of unsaturated soil, and it obtains the index λ before deformation of the soil. In addition, the value of index λ remains unchanged before and after deformation. Based on the actual measured value of the soil–water characteristic curve before deformation, the air-entry value prediction model is used to predict the air-entry value of soil with different initial void ratios. The relative permeability coefficient of unsaturated soil is then conveniently predicted using the graphical method in combination with the simplified unified model. The method is validated by using the test data of silt loam, sandy loam, and unconsoildated sand. The results show that the predicted results are consistent with the measured values. The prediction method in this paper is simple and overcomes the limitations associated with the determination of the index λ. It expands the application range of the unsaturated relative permeability coefficient model while improving the accuracy of predictions.

Funder

National Natural Science Foundation of China

Innovation Group Project of Hubei Science and Technology Department,China

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3