Affiliation:
1. State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China
2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
Abstract
Thin sections, AIM-SEM, MICP, and nitrogen adsorption were performed on laminated and layered shales to characterize their complex pore and fracture structure. Combining the MICP model with the FHH model, this work proposes a new fractal method for lacustrine shales with complex lamina structure. The fractal characteristics presented four zones, representing the heterogeneity of fractures, macropores, mesopores, and micropores. The pores and fractures of shale have strong heterogeneity. Laminated shale has strong heterogeneity in mesopores and moderate heterogeneity in micropores. Layered shale has strong heterogeneity in fractures and moderate heterogeneity in micropores. The lamina structure and content of organic and mineral composition has a great influence on heterogeneity. The mineral laminae in laminated shale change frequently; lamellation fractures are mainly developed, and the structures are similar. Layered shales develop fractures between layers and structural fractures; the structural differences are significant. Macropores are mostly interparticle pores between quarts with similar structures. The wider lamina thickness of layered shale provides sufficient crystallization space for minerals, so the mesopores of layered shale are more homogeneous. Micropores are less developed, mainly consisting of intraparticle pores between clay minerals, which are complex but similar in structure in the two types of shale. The heterogeneity of mesopores and micropores is not conducive to hydrocarbon migration. Fractures and macropores need to be connected with meso–micropores to form a transport system. So, mesopores and micropores play decisive roles in hydrocarbon migration. Based on the above understanding, this paper points out that hydrocarbon in laminated shale with more carbonate minerals and a high thermal evolution degree has better availability.
Funder
National Natural Science Foundation of China