Diffraction of a Gaussian Beam with Limited cross Section by a Volume Phase Grating under Waveguide Mode Resonance

Author:

Fitio VolodymyrORCID,Yaremchuk IrynaORCID,Bendziak Andriy,Marchewka MichalORCID,Bobitski YaroslavORCID

Abstract

In this work, the diffraction of a Gaussian beam on a volume phase grating was researched theoretically and numerically. The proposed method is based on rigorous coupled-wave analysis (RCWA) and Fourier transform. The Gaussian beam is decomposed into plane waves using the Fourier transform. The number of plane waves is determined using the sampling theorem. The complex reflected and transmitted amplitudes are calculated for each RCWA plane wave. The distribution of the fields along the grating for the reflected and transmitted waves is determined using inverse Fourier transform. The powers of the reflected and transmitted waves are determined based on these distributions. Our method shows that the energy conservation law is satisfied for the phase grating. That is, the power of the incident Gaussian beam is equal to the sum of the powers of the reflected and transmitted beams. It is demonstration of our approach correctness. The numerous studies have shown that the spatial shapes of the reflected and transmitted beams differ from the Gaussian beam under resonance. In additional, the waveguide mode appears also in the grating. The spatial forms of the reflected and transmitted beams are Gaussian in the absence of resonance. It was found that the width of the resonance curves is wider for the Gaussian beam than for the plane wave. However, the spectral and angular sensitivities are the same as for the plane wave. The resonant wavelengths are slightly different for the plane wave and the Gaussian beam. Numerical calculations for four refractive index modulation coefficients of the grating medium were carried out by the proposed method. The widths of the resonance curves decrease with the increasing in the refractive index modulation. Moreover, the reflection coefficient also increases.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3