Policy, Technology, and Management Options for Water Conservation in the Ogallala Aquifer in Kansas, USA

Author:

Steiner Jean L.ORCID,Devlin Daniel L.,Perkins Sam,Aguilar Jonathan P.,Golden Bill,Santos Eduardo A.,Unruh Matt

Abstract

The Ogallala Aquifer underlies 45 million ha, providing water for approximately 1.9 million people and supporting the robust agriculture economy of the US Great Plains region. The Ogallala Aquifer has experienced severe depletion, particularly in the Southern Plains states. This paper presents policy innovations that promote adoption of irrigation technology, and management innovations. Innovation in Kansas water policy has had the dual effects of increasing the authority of the state to regulate water while also providing more flexibility and increasing local input to water management and regulation. Technology innovations have focused on improved timing and placement of water. Management innovations include soil water monitoring, irrigation scheduling, soil health management and drought-tolerant varieties, crops, and cropping systems. The most noted success has been in the collective action which implemented a Local Enhanced Management Area (LEMA), which demonstrated that reduced water pumping resulted in low to no groundwater depletion while maintaining net income. Even more encouraging is the fact that irrigators who have participated in the LEMA or other conservation programs have conserved even more water than their goals. Innovative policy along with creative local–state–federal and private–public partnerships are advancing irrigation technology and management. Flexibility through multi-year allocations, banking of water not used in a given year, and shifting water across multiple water rights or uses on a farm are promising avenues to engage irrigators toward more sustainable irrigation in the Ogallala region.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3