Abstract
In this study we used a non-autonomous Chua’s circuit, and the fractional Lorenz chaos system. This was combined with the Extension theory detection method to analyze the voltage signals. The bearing vibration signals, measured using an acceleration sensor, were introduced into the master and slave systems through a Chua’s circuit. In a chaotic system, minor differences can cause significant changes that generate dynamic errors. The matter-element model extension can be used to determine the bearing condition. Extension theory can be used to establish classical and sectional domains using the dynamic errors of the fault conditions. The results obtained were compared with those from discrete Fourier transform analysis, wavelet analysis and an integer order chaos system. The diagnostic rate of the fractional-order master and slave chaotic system could reach 100% if the fractional-order parameter adjustment was used. This study presents a very efficient and inexpensive method for monitoring the state of ball bearings.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献