Revealing Interactions of Gut Microbiota and Metabolite in Confined Environments Using High-Throughput Sequencing and Metabolomic Analysis

Author:

Wang Ziying12,Xu Haodan12,Song Xin3,Chen Zheng4,Wang Guangqiang3ORCID,Yang Yijin3,Zhu Beiwei4,Ai Lianzhong3,Liu Chenxi12,Zhang Yaxuan12,Yang Yong3ORCID,Wang Chuan12,Xia Yongjun3ORCID

Affiliation:

1. Naval Medical Center, Naval Medical University, Shanghai 200433, China

2. Key Laboratory of Molecular Neurobiology of Ministry of Education, Shanghai 200433, China

3. School of Health Science and Engineering, Shanghai Engineering Research Center of Food Microbiology, University of Shanghai for Science and Technology, Shanghai 200093, China

4. School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China

Abstract

A confined environment is a special kind of extreme working environment, and prolonged exposure to it tends to increase psychological stress and trigger rhythmic disorders, emotional abnormalities and other phenomena, thus seriously affecting work efficiency. However, the mechanisms through which confined environments affect human health remain unclear. Therefore, this study simulates a strictly controlled confined environment and employs integrative multi-omics techniques to analyze the alterations in gut microbiota and metabolites of workers under such conditions. The aim is to identify metabolic biomarkers and elucidate the relationship between gut microbiota and metabolites. High-throughput sequencing results showed that a confined environment significantly affects gut microbial composition and clusters subjects’ gut microbiota into two enterotypes (Bla and Bi). Differences in abundance of genera Bifidobacterium, Collinsella, Ruminococcus_gnavus_group, Faecalibacterium, Bacteroides, Prevotella and Succinivibronaceae UCG-002 were significant. Untarget metabolomics analyses showed that the confined environment resulted in significant alterations in intestinal metabolites and increased the activity of the body’s amino acid metabolism and bile acid metabolism pathways. Among the metabolites that differed after confined environment living, four metabolites such as uric acid and beta-PHENYL-gamma-aminobutyric acid may be potential biomarkers. Further correlation analysis demonstrated a strong association between the composition of the subjects’ gut microbiota and these four biomarkers. This study provides valuable reference data for improving the health status of workers in confined environments and facilitates the subsequent proposal of targeted prevention and treatment strategies.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Shanghai Engineering Research Center of food microbiology program

Logistics research program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3