Development and Analysis of Optimization Algorithm for Demand-Side Management Considering Optimal Generation Scheduling and Power Flow in Grid-Connected AC/DC Microgrid

Author:

Barnawi Abdulwasa Bakr1ORCID

Affiliation:

1. Department of Electrical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia

Abstract

The world energy sector is experiencing many challenges, such as maintaining a demand–supply balance with continuous increases in demand, reliability issues, and environmental concerns. Distributed energy resources (DERs) that use renewable energy sources (RESs) have become more prevalent due to environmental challenges and the depletion of fossil fuel reserves. An increased penetration of RESs in a microgrid system facilitates the establishment of a local independent system. However, these systems, due to the uncertainties of RESs, still encounter major issues, like increased operating costs or operating constraint violations, optimal power management, etc. To solve these issues, this paper proposes a stochastic programming model to minimize the total operating cost and emissions and improve the operational reliability with the help of a generalized normal distribution optimization (GNDO). A day-ahead demand response is scheduled, aiming to shift loads to enhance RES utilization efficiency. Demand-side management (DSM) with RESs is utilized, and battery energy storage systems in low-voltage and medium-voltage microgrids are shown. Mathematical formulations of each element in the microgrids were performed. Optimal and consumer-friendly solutions were found for all the cases. Environmental concerns based on the amount of harmful emissions were also analyzed. The importance of demand response is demonstrated vividly. The aim is to optimize energy consumption and achieve optimum cost of operation via DSM, considering several security constraints. A comparative analysis of operating costs, emission values, and the voltage deviation was carried out to prove and justify their potential to solve the optimal scheduling and power flow problem in AC/DC microgrids.

Funder

Deanship of Scientific Research at King Khalid University, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3