Offshore Wind Power Resource Assessment in the Gulf of North Suez

Author:

Rehman Shafiqur1ORCID,Irshad Kashif1ORCID,Ibrahim Nasiru I.1,AlShaikhi Ali2ORCID,Mohandes Mohamed A.12ORCID

Affiliation:

1. Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

2. Electrical Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia

Abstract

Growing population, industrialization, and power requirements are adversely affecting the environment through increased greenhouse gases resulting from fossil fuel burning. Global greenhouse gas mitigation targets have led nations to promote clean and self-renewable sources of energy to address this environmental issue. Offshore wind power resources are relatively more attractive due to high winds, less turbulence, minimal visualization effects, and no interaction of infrastructure. The present study aims at conducting an offshore wind power resource assessment (OWPRA) at some locations in the Gulf of North Suez. For this purpose, the long-term hourly mean wind speed (WS) and wind direction above mean sea level (AMSL), as well as temperature and pressure data near the surface, are used. The data is obtained from ERA5 (fifth generation global climate reanalysis) at six (L1–L6) chosen offshore locations. The data covers a period of 43 years, between 1979 and 2021. The WS and direction are provided at 100 m AMSL, while temperature and pressure are available near water-surface level. At the L1 to L6 locations, the log-term mean WS and wind power density (WPD) values are found to be 7.55 m/s and 370 W/m2, 6.37 m/s and 225 W/m2, 6.91 m/s and 281 W/m2, 5.48 m/s and 142 W/m2, 4.30 m/s and 77 W/m2, and 5.03 and 115 W/m2 and at 100 m AMSL, respectively. The higher magnitudes of monthly and annual windy site identifier indices (MWSI and AWSI) of 18.68 and 57.41 and 12.70 and 42.94 at the L1 and L3 sites, and generally lower values of wind variability indices, are indicative of a favorable winds source, which is also supported by higher magnitudes of mean WS, WPD, annual energy yields, plant capacity factors, and wind duration at these sites. The cost of energy for the worst and the best cases are estimated as 10.120 USD/kWh and 1.274 USD/kWh at the L5 and L1 sites, corresponding to wind turbines WT1 and WT4. Based on this analysis, sites L1, L3, and L2 are recommended for wind farm development in order of preference. The wind variability and windy site identifier indices introduced will help decision-makers in targeting potential windy sites with more confidence.

Funder

IRC for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3