Healing Evaluation of Asphalt Mixtures with Polymer Capsules Containing Rejuvenator under Different Water Solutions

Author:

Li Zhifeng1,Wang Huan1,Wan Pei1,Liu Quantao12,Xu Shi34ORCID,Jiang Jian5,Fan Lulu5,Tu Liangliang5

Affiliation:

1. State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Mafangshan Campus, Wuhan 430070, China

2. Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China

3. School of Civil Engineering and Architecture, Wuhan University of Technology, Mafangshan Campus, Wuhan 430070, China

4. Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

5. Shenzhen Sez Construction Group Co., Ltd., Shenzhen 518034, China

Abstract

Polymer Ca-alginate capsules with rejuvenator bring a high healing level for asphalt concrete under dry healing environments; however, the healing levels of bituminous mixtures containing capsules under water healing conditions are still unknown. In view of this, this study aimed at exploring the healing levels of asphalt concrete containing polymer capsules under various solution healing conditions following cyclic loads. This study involved the preparation of capsules, followed by the evaluation of their morphological characteristics, resilience to compression, thermal endurance, and rejuvenator content. The assessment of the healing properties of asphalt concrete utilizing capsules was conducted through a fracture–heal–refracture examination. This study conducted Fourier transform infrared spectrum experiments to determine the rejuvenator release ratio of capsules under dry conditions and the remaining rejuvenator content in extracted bituminous binder from capsule–asphalt concrete after solution treatment. Meanwhile, a dynamic shear rheometer was utilized to investigate the rheological characteristics of asphalt binder. Results revealed that the healing ratios of capsule–asphalt concrete beams under a dry healing environment were significantly higher than that of beams under various solution healing conditions, and the alkali solution has the worst effect on the improvement in healing ratio. The coupled impact of moisture intrusion and ion erosion resulted in an enhancement of complex modulus of asphalt binder while concurrently reducing its phase angle. Consequently, the restorative capacity of the asphalt binder was weakened.

Funder

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Hubei Science and Technology Innovation Talent and Service Project

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3