Numerical Analysis of the Impact Parameters on the Dynamic Response of a Submerged Floating Tunnel under Coupling Waves and Flows

Author:

Xu Wanhai1ORCID,Song Zhiyou1,Liu Guangjun1,Sun Yumeng1

Affiliation:

1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China

Abstract

The Submerged Floating Tunnel (SFT) is a highly promising cross-sea transportation structure. Due to its body being suspended in water, waves and flows are the primary environmental loads it encounters. Existing numerical simulations have been based on potential flow theory, which fails to fully consider shear forces and the nonlinear characteristics of the flow field. To overcome this limitation, the Computational Fluid Dynamics (CFD) approach, relying on solving the Navier-Stokes equations, can be employed. In this study, we establish a CFD model for the SFT and analyze the impact mechanisms of wave-flow coupling on its dynamic response, considering parameters such as wave height, flow velocity, wave direction, and flow direction. With increasing wave height, the acceleration, mooring tension, and heave amplitude of the SFT significantly increase, and the nonlinear characteristics of its dynamic response become more pronounced. For example, when wave height, Hi, increases from 0.046 m to 0.138 m, the maximum value of dimensionless heave, δz/Hi, increases from 0.075 to 0.284, nearly quadrupling in magnitude. When waves and flows propagate in the same direction, the heave amplitude of the SFT increases compared to the case with waves acting alone, while sway and roll amplitudes decrease. Under conditions of higher flow velocity, the SFT displaces significantly along the direction of flow and water depth, deviating significantly from its original equilibrium position. At this point, the tunnel primarily experiences periodic forces due to vortex shedding, and the anchor chain on the downstream side remains slack. In scenarios where waves and flows propagate in opposite directions, both the maximum acceleration and mooring tension of the SFT increase significantly. For instance, the onshore tension of the cable, Fon, increases by 36%, while the offshore tension, Foff, increases by 89%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference22 articles.

1. Hou, Z.-Y. (2020). The Models for Hydrodynamic Analysis of the Submerged Floating Tunnel under Wave and Current Action, Dalian University of Technology.

2. Research progress on hydrodynamic characteristics and model test of submerged floating tunnel in China;Zhong;Technol. Highw. Transp.,2023

3. A review of research on tether-type submerged floating tunnels;Xu;Appl. Ocean Res.,2023

4. Dynamic response analysis of submerged floating tunnel supported on columns in vortex-induced vibration;Fan;J. Railw. Sci. Eng.,2020

5. Fluid-structure interaction of submerged floating tunnel in wave field;Ge;Procedia Eng.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3