Leveraging Classical Statistical Methods for Sustainable Maintenance in Automotive Assembly Equipment

Author:

Bucay-Valdiviezo Juan1,Escudero-Villa Pedro2ORCID,Paredes-Fierro Jenny2,Ayala-Chauvin Manuel1ORCID

Affiliation:

1. Centro de Investigaciones de Ciencias Humanas y de la Educación (CICHE), Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador

2. Facultad de Ingeniería, Universidad Nacional de Chimborazo, Riobamba 060108, Ecuador

Abstract

Predictive maintenance management plays a crucial role in ensuring the reliable operation of equipment in industry. While continuous monitoring technology is available today, equipment without sensors limits continuous equipment state data recording. Predictive maintenance has been effectively carried out using artificial intelligence algorithms for datasets with sufficient data. However, replicating these results with limited data is challenging. This work proposes the use of time series models to implement predictive maintenance in the equipment of an automotive assembly company with few records available. For this purpose, three models are explored—Holt–Winters Exponential Smoothing (HWES), Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated Moving Average (SARIMA)—to determine the most accurate forecasting of future equipment downtime and advocate the use of SAP PM for effective maintenance process management. The data were obtained from five equipment families from January 2020 to December 2022, representing 36 registers for each piece of equipment. After data fitting and forecasting, the results indicate that the SARIMA model best fits seasonal characteristics, and the forecasting offers valuable information to help in decision-making to avoid equipment downtime, despite having the highest error. The results were less favorable when handling datasets with random components, requiring model recalibration for short-term forecasting.

Funder

Universidad Tecnológica Indoamérica

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3