Development of Green Leather Alternative from Natural Rubber and Pineapple Leaf Fiber

Author:

Duangsuwan Sorn1ORCID,Junkong Preeyanuch1,Phinyocheep Pranee1,Thanawan Sombat2,Amornsakchai Taweechai134ORCID

Affiliation:

1. Polymer Science and Technology Program, Department of Chemistry, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand

2. Rubber Technology Research Center, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand

3. Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand

4. TEAnity Team Co., Ltd., 40/494 Soi Navamintra 111, Khet Bueng Kum, Bangkok 10230, Thailand

Abstract

In the present research, a plant-based leather substitute material or leather alternative was developed from natural rubber (NR) and pineapple leaf fiber (PALF) using a simple process. Pineapple leaf fiber was extracted from waste pineapple leaves using a mechanical method. Untreated PALF (UPALF) and sodium hydroxide-treated PALF (TPALF) were then formed into non-woven sheets using a paper making process. PALF non-woven sheets were then coated with compounded natural rubber latex at three different NR/PALF ratios, i.e., 60/40, 50/50, and 40/60. Epoxidized natural rubber with an epoxidation level of 10% (ENR) was used as an adhesion promoter, and its content was varied at 5, 10, and 15% by weight of the total rubber. The obtained leathers were characterized in terms of tensile properties, tear strength, and hardness. The internal structure of the leathers was observed with a scanning electron microscope. Comparison of these properties was made against those reported in the literature. It was found that the leather with NR/PALF equal to 50/50 was the most satisfactory; that prepared from TPALF was softer and had greater extension at break. With the addition of ENR at 5%, the stress-strain curve of each respective leather increased significantly, and as the amount of ENR was increased to 10 and 15%, the stresses at corresponding strains dropped to lower values but remained higher than that without ENR. PALF leather prepared in this study has comparable or better properties than other alternative leathers reported in the literature and is much stronger than that made from mushrooms. Thus, this type of leather alternative offers unique characteristics of being bio-based and having a lower carbon footprint.

Funder

National Research Council of Thailand and Mahidol University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3