Isothermal and Kinetic Studies for the Removal of Malachite Green and Congo Red Dyes Using Wastes from Mining and Processing Perlite in Different Particle Sizes as Sustainable Adsorbents

Author:

Filho Josenildo I. Santos12,Silva Vanderlane C.12ORCID,Silva Paulysendra F.12,Cartaxo Juliana M.2,Rodrigues Alisson M.3ORCID,Menezes Romualdo R.2,Neves Gelmires A.2ORCID

Affiliation:

1. Graduate Program in Materials Science and Engineering (PPG-CEMat), Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil

2. Laboratory of Materials Technology, Department of Materials Engineering, Federal University of Campina Grande (UFCG), Av. Aprígio Veloso-882, Bodocongó, Campina Grande 58429-900, PB, Brazil

3. Graduate Program in Materials Science (PPGCIMA), Faculdade UnB Planaltina, University of Brasília (UNB), Vila Nossa Senhora de Fátima, Brasília 70904-910, DF, Brazil

Abstract

Perlite waste materials with different particle sizes were evaluated as potential candidates for removing the malachite green (MG) and Congo red (CR) dyes from contaminated water. Two types of waste, referred to as coarse (CP) and fine (FP), with particle sizes of 0.075 mm, 0.045 mm, and 0.037 mm, were used. The samples were characterized using X-ray diffraction, X-ray fluorescence, Fourier transform infrared spectroscopy, and N2 adsorption/desorption. The adsorption efficiency of MG and CR was investigated by varying the parameters of pH, contact time, and initial concentration. The reduction in particle size significantly influenced the removal of the CR dye, leading to an increase in the adsorption rate of 23.9% and 45.5% for CP and FP, respectively. Conversely, the adsorption of the MG dye on the residues was not affected by different particle sizes. CP and FP exhibited a removal rate exceeding 70% for both dyes. The adsorption of MG and CR on the wastes was well-described by the Sips isotherm model. The results of adsorption kinetics were best fit by the Elovich model. Perlite waste materials have demonstrated significant potential for the adsorptive remove of cationic and anionic dyes from aqueous solutions.

Funder

Coordenação de Aperfeiçoamento de Pessoal e Nível Superior–Brasil (CAPES)–Finance Code 001

Brazilian research funding agency CNPq

FAPESQ

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3