Identifying the Critical Supply Chains for Black Carbon and CO2 in the Sichuan Urban Agglomeration of Southwest China

Author:

Li Shuangzhi1,Zhang Xiaoling12ORCID,Deng Zhongci3,Liu Xiaokang4,Yang Ruoou5,Yin Lihao1

Affiliation:

1. Plateau Atmosphere and Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, China

2. Chengdu Plain Urban Meteorology and Environment Sichuan Provincial Field Scientific Observation and Research Station, Chengdu 610225, China

3. College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China

4. School of Economics and Management, Beihang University, Beijing 100191, China

5. Sichuan Meteorological Service Center, Chengdu 610072, China

Abstract

Black carbon (BC) and CO2 emissions are the two major factors responsible for global climate change and the associated health risks. Quantifying the impact of economic activities in urban agglomerations on BC and CO2 emissions is essential for finding a balance between climate change mitigation and pollution reduction. In this study, we utilized a city-level environmental extended multi-regional input–output model (EE-MRIO), integrated nexus strength (INS), and structural path analysis (SPA) to quantify the BC and CO2 footprints, nexus nodes, and supply chains of 21 cities in the Sichuan urban agglomeration (SUA) from 2012 to 2017. The results revealed that approximately 70% of the BC and CO2 footprints come from inter-city transactions, with Chengdu being the largest importing city, while the supply of other cities was greater than their consumption. The SUA has transitioned from a supply-side city cluster to a consumption-oriented city cluster in its trade with other domestic regions. The SPA analysis highlighted that the construction sector was the largest emitter of downstream BC and CO2, while the electricity supply, metal/nonmetallic manufacture, oil refining and coking, transportation, and extraction industry sectors were the main nexus nodes for BC and CO2 emissions in the SUA. Notably, the reduction in BC emissions was due to decreased indirect emissions from oil refining and coking, while the decrease in CO2 emissions was a result of reduced indirect emissions from electricity supply. This article presents, for the first time, a quantification of the heterogeneous impacts and emission supply chains of BC and CO2 emissions from economic activities in the SUA, providing valuable insights for developing climate mitigation policies tailored to different urban clusters.

Funder

National Key Research and Development Plan Projects

Research Launch Project of Talents Introduction of Chengdu University of Information Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3