Mulch and Grass Cover Unevenly Halt Runoff Initiation and Sediment Detachment during the Growing Season of Hazelnut (Corylus avellana L.) in Croatia

Author:

Matisic Manuel1ORCID,Reljic Marko2ORCID,Dugan Ivan1ORCID,Pereira Paulo3,Filipovic Vilim24ORCID,Filipovic Lana2ORCID,Krevh Vedran2ORCID,Bogunovic Igor1ORCID

Affiliation:

1. Department of General Agronomy, Division for Agroecology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia

2. Department of Soil Amelioration, Division for Agroecology, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia

3. Environmental Management Laboratory, Mykolas Romeris University, LT-08303 Vilnius, Lithuania

4. School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia

Abstract

Hazelnut orchards are popular for cropping on sloped sites, which are often highly erodible. This study aimed to assess the impact of soil management and season in a hazelnut orchard on soil properties and hydrological response. Three treatments (Tilled, Straw, and Grass) were established in Munije (Croatia) on Stagnosol. In Spring, Summer, and Fall, a rainfall simulation was performed (intensity of 58 mm h−1 for 30 min). Results reveal higher water stable aggregate values were observed for the Straw treatment in all seasons. Higher soil organic matter (SOM) content was noticed for the Grass treatment in all seasons, while lower values were recorded for the Tilled treatment. Sediment loss in Summer was up to 650% and 1300% higher for the Tilled treatment compared with the Straw and Grass treatments. This study strengthens the comprehension of utilizing a permanent ground cover in hazelnut orchards as a sustainable practice, contributing to the mitigation of soil erosion processes and the improvement of soil properties. The Straw treatment is a viable option since it increases soil stability and SOM, consequently preventing high soil erosion.

Funder

Croatian Science Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3