FabricNET: A Microscopic Image Dataset of Woven Fabrics for Predicting Texture and Weaving Parameters through Machine Learning

Author:

Seçkin Mine12ORCID,Seçkin Ahmet Çağdaş3ORCID,Demircioglu Pinar45ORCID,Bogrekci Ismail4

Affiliation:

1. Textile Engineering, Engineering Faculty, Uşak University, Uşak 64100, Türkiye

2. Physiotherapy Department, Aydın Vocational School of Health Services, Aydın Adnan Menderes University, Aydın 09100, Türkiye

3. Computer Engineering Department, Engineering Faculty, Aydın Adnan Menderes University, Aydın 09100, Türkiye

4. Mechanical Engineering Department, Engineering Faculty, Aydın Adnan Menderes University, Aydın 09100, Türkiye

5. Institute of Materials Science, TUM School of Engineering and Design, Technical University of Munich, 85748 Garching, Germany

Abstract

This research presents an approach aimed at enhancing texture recognition and weaving parameter estimation in the textile industry to align with sustainability goals and improve product quality. By utilizing low-cost handheld microscopy and machine learning, this method offers the potential for more precise production outcomes. In this study, textile images were manually labeled for texture, specific mass, weft, and warp parameters, followed by the extraction of various texture features, resulting in a comprehensive dataset comprising four hundred and fifty-eight inputs and four outputs. Prominent machine learning algorithms, including XGBoost, RF, and MLP, were applied, resulting in noteworthy achievements. Specifically, XGBoost demonstrated an impressive texture classification accuracy of 0.987, while RF yielded the lowest MAE (5.121 g/cm) in specific mass prediction. Additionally, weft and warp estimations displayed superior accuracy compared to manual measurements. This research emphasizes the crucial role of AI in improving efficiency and sustainability within the textile industry, potentially reducing resource wastage, enhancing worker safety, and increasing productivity. These advancements hold the promise of significant positive environmental and social impacts, marking a substantial step forward in the industry’s pursuit of its objectives.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3