Modeling Impact of Transportation Infrastructure-Based Accessibility on the Development of Mixed Land Use Using Deep Neural Networks: Evidence from Jiang’an District, City of Wuhan, China

Author:

Almansoub Yunes123ORCID,Zhong Ming12ORCID,Safdar Muhammad12ORCID,Raza Asif4,Dahou Abdelghani5ORCID,Al-qaness Mohammed A. A.67ORCID

Affiliation:

1. Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China

2. National Engineering Research Center for Water Transport Safety, Engineering Research Center for Transportation Safety, Wuhan 430063, China

3. Faculty of Computer Science and IT, Al-Razi University, Sana’a 12544, Yemen

4. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 211106, China

5. L.D.D.I. Laboratory, Faculty of Science and Technology, University of Ahmed DRAIA, Adrar 01000, Algeria

6. College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China

7. College of Engineering and Information Technology, Emirates International University, Sana’a 16881, Yemen

Abstract

Mixed land use (MLU) plays a crucial role in fostering a sustainable urban development, vibrant communities, and efficient land utilization, providing a viable solution for smart growth, inclusive public transit, and urban sustainability. This study employs deep neural network (DNN) models: multilayer perceptron (MLP), and long short-term memory (LSTM), to analyze the effect of the transportation infrastructure-based accessibility on the prevalence of MLU patterns, based on the following data: infrastructure-based accessibility measures represented by the logsum (or transport supply), MLU patterns at the parcel level, and floor space prices by space type, for the years 2012 and 2015. Furthermore, the proposed methods are applied to the Jiang’an District of the city of Wuhan, China, at the parcel level as the case study. The study results reveal that MLU is predominantly accessible in areas close to the city center, characterized by a high density, and is relatively scarce on the city outskirts. Notably, parcels exhibiting mixed residential–commercial and residential land-use patterns underwent significant changes between 2012 and 2015, particularly in regions with robust accessibility via non-motorized modes and public transit, specifically in the central and southern parts of Jiang’an District. This transition is evident under scenario 3 (walk, bike, bus, subway) and scenario 6 (walk, bus, car) considered in this study. Furthermore, the study observed a substantial expansion in mixed commercial–residential and commercial districts, significantly near the high-transit accessibility area of subway line 1, as demonstrated in scenario 7 (bike, subway, taxi). The results from the MLP models show a mean relative error (MRE) of 4.7–14.08% for the MLU, and the LSTM models show an MRE of 3.74–10.38% for the MLU. More importantly, both the training and forecasting errors of the above models are lower, in most cases, than those reported in the literature. Moreover, these results indicate that the transportation supply or the infrastructure-based accessibility (represented by logsum) significantly influences MLU patterns.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3