Aqueous Organic Redox-Targeting Flow Batteries with Advanced Solid Materials: Current Status and Future Perspective

Author:

Ma Jin1,Rong Sida1,Cai Yichong1,Wang Tidong1,Han Zheng1,Ji Ya1

Affiliation:

1. China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 201306, China

Abstract

Aqueous organic redox flow batteries (AORFBs) represent innovative and sustainable systems featuring decoupled energy capacity and power density; storing energy within organic redox-active materials. This design facilitates straightforward scalability, holding the potential for an affordable energy storage solution. However, AORFBs face challenges of unsatisfied energy density and stability. Redox-targeting (RT) reaction is a promising way to resolve these problems, which involves a closed-loop electrochemical–chemical cycle between soluble redox mediators and solid materials. Among all these systems, the aqueous organic redox-targeting system is the most promising due to its greater sustainability, safety, low cost, and excellent tunability when compared to non-aqueous or all-vanadium systems, especially when it comes to energy storage on a large scale. Firstly, various types of AORFBs and their characteristics are discussed and analyzed, followed by introducing the concept and the evolution of RT. In addition, advanced characterization techniques to analyze RT-based AORFBs are summarized. Finally, the challenges lying in aqueous organic redox-targeting flow batteries are stated and corresponding recommendations are provided. It is anticipated that AORFBs with advanced solid materials will provide a promising solution for large-scale energy storage.

Funder

Shanghai Sailing Program

SJTU-Warwick Joint Seed Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3