Toward Sustainable Model Services for Deep Learning: A Sub-Network-Based Solution Integrating Blockchain with IPFS and a Use Case in Intelligent Transportation

Author:

Jiang Rui1,Li Jiatao1ORCID,Bu Weifeng1,Chen Chongqing1

Affiliation:

1. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Abstract

In the era of deep learning as a service, ensuring that model services are sustainable is a key challenge. To achieve sustainability, the model services, including but not limited to storage and inference, must maintain model security while preserving system efficiency, and be applicable to all deep models. To address these issues, we propose a sub-network-based model storage and inference solution that integrates blockchain and IPFS, which includes a highly distributed storage method, a tamper-proof checking method, a double-attribute-based permission management method, and an automatic inference method. We also design a smart contract to deploy these methods in the blockchain. The storage method divides a deep model into intra-sub-network and inter-sub-network information. Sub-network files are stored in the IPFS, while their records in the blockchain are designed as a chained structure based on their encrypted address. Connections between sub-networks are represented as attributes of their records. This method enhances model security and improves storage and computational efficiency of the blockchain. The tamper-proof checking method is designed based on the chained structure of sub-network records and includes on-chain checking and IPFS-based checking stages. It efficiently and dynamically monitors model correctness. The permission management method restricts user permission based on the user role and the expiration time, further reducing the risk of model attacks and controlling system efficiency. The automatic inference method is designed based on the idea of preceding sub-network encrypted address lookup. It can distribute trusted off-chain computing resources to perform sub-network inference and use the IPFS to store model inputs and sub-network outputs, further alleviating the on-chain storage burden and computational load. This solution is not restricted to model architectures and division methods, or sub-network recording orders, making it highly applicable. In experiments and analyses, we present a use case in intelligent transportation and analyze the security, applicability, and system efficiency of the proposed solution, particularly focusing on the on-chain efficiency. The experimental results indicate that the proposed solution can balance security and system efficiency by controlling the number of sub-networks, thus it is a step towards sustainable model services for deep learning.

Funder

National Natural Science Foundation of China

National Training Program of Innovation and Entrepreneurship for Undergraduates

Shanghai Maritime University’s Top Innovative Talent Training Program for Graduate Students in 2022

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3