Synergetic Effect of FeTi in Enhancing the Hydrogen-Storage Kinetics of Nanocrystalline MgH2

Author:

Paramonov Roman1,Spassov Tony2ORCID,Nagy Péter1ORCID,Révész Ádám1

Affiliation:

1. Department of Materials Physics, Eötvös University, P.O. Box 32, H-1518 Budapest, Hungary

2. Department of Chemistry, University of Sofia “St.Kl.Ohridski”, 1164 Sofia, Bulgaria

Abstract

High-energy ball milling was applied to produce nanocrystalline MgH2-FeTi powder composites. In order to achieve a remarkable synergetic effect between the two materials, the amount of the FeTi catalyst was chosen to be 40 wt.%, 50 wt.% and 60 wt.%. The morphology and microstructure of the as-milled powders were characterized by scanning electron microscopy and X-ray diffraction, respectively. The evaluation of the diffraction profiles by the Convolutional Multiple Whole Profile fitting algorithm provided a detailed microstructural characterization of the coherently scattering α-MgH2 crystallites. Differential scanning calorimetry experiments revealed two overlapping endotherms corresponding to the dehydrogenation of metastable γ-MgH2 and stable α-MgH2 hydrides. Isothermal hydrogen-sorption experiments were carried out in a Sieverts-type apparatus. It was established that the MgH2-40 wt.% FeTi powder is capable of absorbing 5.8 wt.% hydrogen, while extraordinary absorption kinetics were observed for the MgH2-50 wt.% FeTi alloy, i.e., 3.3 wt.% H2 is absorbed after 100 s.

Funder

International Visegrad Fund

National Research, Development and Innovation Office

Tempus organization

Ministry for Culture and Innovation from the National Research, Development and Innovation Fund

European Union’s NextGenerationEU

Publisher

MDPI AG

Reference70 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3