Affiliation:
1. Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education, Northeast Electric Power University, Jilin 132012, China
2. College of Electrical Engineering and Information Technology, Sichuan University, Chengdu 610065, China
Abstract
Demand response (DR) can improve the accommodation of renewable energy and further affect the distributed generation (DG) allocation strategy. In this context, this paper proposes a stochastic optimal allocation model of DG, considering DR. Firstly, to address the uncertainty of wind and solar power outputs, a large number of scenarios of wind and solar power are generated based on the scenario method, which are then clustered into 10 typical scenarios by the k-means method. Secondly, with the goal of maximizing the total cost, the DR cost and corresponding constraints are introduced. Then, the stochastic planning model for DG is established, where the planning level aims to minimize the investment cost while the operation level minimizes the total operation expectation cost. For the non-linear term in the DR cost and power flow constraint, the Taylor expansion method and second-order conic relaxation method are both adopted to transform the original mixed-integer non-linear model to the mixed-integer second-order conic planning model. Finally, the whole planning model for DG is solved by CPLEX 12.6.0. The results show that DR can reduce the total cost and improve the accommodation of renewable energy in the DG planning process, which should be paid more attention to in the DG planning model.
Funder
Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献