A Development of an IoT-Based Connected University System: Progress Report

Author:

Matuska Slavomir1ORCID,Machaj Juraj1ORCID,Hutar Miroslav1ORCID,Brida Peter1ORCID

Affiliation:

1. Faculty of Electrical Engineering and Information Technology, University of Zilina, 010 26 Zilina, Slovakia

Abstract

In this paper, a report on the development of an Internet of Things (IoT)-based connected university system is presented. There have been multiple smart solutions developed at the university over recent years. However, the user base of these systems is limited. The IoT-based connected university system allows for integration of multiple subsystems without the need to implement all of them in the same environment, thus enabling end-users to access multiple solutions through a single common interface. The implementation is based on microservice architecture, with the focus mainly on system robustness, scalability, and universality. In the system design, four subsystems are currently implemented, i.e., the subsystem for indoor navigation, the subsystem for parking assistants, the subsystem for smart classrooms or offices, and the subsystem for news aggregation from university life. The principles of all implemented subsystems, as well as the implementation of the system as a web interface and a mobile application, are presented in the paper. Moreover, the implementation of the indoor navigation subsystem that uses signals from Bluetooth beacons is described in detail. The paper also presents results proving the concept of the Bluetooth-based indoor navigation, taking into account different placements of nodes. The tests were performed in a real-world environment to evaluate the feasibility of the navigation module that utilizes deterministic fingerprinting algorithms to estimate the positions of users’ devices.

Funder

Slovak VEGA grant agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3