Elements of Transition-State Theory in Relation to the Thermal Dissociation of Selected Solid Compounds

Author:

Mianowski Andrzej1ORCID,Radko Tomasz1ORCID,Bigda Rafał1

Affiliation:

1. Institute of Energy and Fuel Processing Technology, Zamkowa 1, 41-803 Zabrze, Poland

Abstract

An analysis was carried out on the thermal dissociation of selected inorganic salts according to Transition-State Theory (TST). For this purpose, two possibilities were compared in the context of rate constants: in the first case using the Arrhenius constant directly from TST, and in the second, using the thermodynamic equilibrium constant of the reaction/process of active state formation. The determined relationships are presented in the form of temperature profiles. It was established that TST applies to reactions for which there is a formally and experimentally reversible reaction, in the literal sense or catalytic process. The importance of the isoequilibrium temperature, which results from the intersection of the thermodynamic temperature profile and the Gibbs free energy of activation, was demonstrated. Its values close to the equilibrium temperature are indicative of more dynamic kinetic qualities. As part of the discussion, the Kinetic Compensation Effect (KCE) was used to observe changes in the entropy of activation by comparing two kinetic characteristics of the same reaction. Enthalpy–Entropy Compensation (EEC) was shown to be the same law as KCE, just expressed differently. This was made possible by TST, specifically the entropy of activation at isokinetic temperature, by which the perspective of the relationship of energy effects changes.

Publisher

MDPI AG

Reference86 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3