Deep Neural Network-Based Smart Grid Stability Analysis: Enhancing Grid Resilience and Performance

Author:

Lahon Pranobjyoti1,Kandali Aditya Bihar2,Barman Utpal3ORCID,Konwar Ruhit Jyoti4,Saha Debdeep5,Saikia Manob Jyoti6ORCID

Affiliation:

1. Department of Electrical Engineering, Assam Science and Technology University, Guwahati 781014, India

2. Department of Electrical Engineering, Jorhat Engineering College, Jorhat 785007, India

3. Faculty of Computer Technology, Assam Down Town University, Guwahati 781026, India

4. Faculty of Engineering, Assam Down Town University, Guwahati 781026, India

5. Department of Electrical and Electronics Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India

6. Department of Electrical Engineering, University of North Florida, Jacksonville, FL 32224, USA

Abstract

With the surge in population growth, the demand for electricity has escalated, necessitating efficient solutions to enhance the reliability and security of electrical systems. Smart grids, functioning as self-sufficient systems, offer a promising avenue by facilitating bi-directional communication between producers and consumers. Ensuring the stability and predictability of smart grid operations is paramount to evaluating their efficacy and usability. Machine learning emerges as a crucial tool for decision-making amidst fluctuating consumer demand and power supplies, thereby bolstering the stability and reliability of smart grids. This study explores the performance of various machine learning classifiers in predicting the stability of smart grid systems. Utilizing a smart grid dataset obtained from the University of California’s machine learning repository, classifiers such as logistic regression (LR), XGBoost, linear support vector machine (Linear SVM), and SVM with radial basis function (SVM-RBF) were evaluated. Evaluation metrics, including accuracy, precision, recall, and F1 score, were employed to assess classifier performance. The results demonstrate high accuracy across all models, with the Deep Neural Network (DNN) model achieving the highest accuracy of 99.5%. Additionally, LR, linear SVM, and SVM-RBF exhibited comparable accuracy levels of 98.9%, highlighting their efficacy in smart grid stability prediction. These findings underscore the utility of machine learning techniques in enhancing the reliability and efficiency of smart grid systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3