The Impact of Energy Efficiency on Economic Growth: Application of the MARCO Model to the Portuguese Economy 1960–2014

Author:

Santos João1ORCID,Viana Miguel1,Nieto Jaime2ORCID,Brockway Paul E.2ORCID,Sakai Marco3ORCID,Domingos Tiago1ORCID

Affiliation:

1. MARETEC—Marine, Environment and Technology Center, LARSyS—Laboratory of Robotics and Engineering Systems, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal

2. Sustainability Research Institute, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK

3. Department of Environment and Geography, University of York, York YO10 5DD, UK

Abstract

The benefits of energy efficiency are recognized in multiple socio-economic spheres. Still, the quantitative impact on macroeconomic performance is not fully understood, as modeling tools are not thermodynamically consistent—failing to explicitly include the useful stage of energy flows and/or thermodynamic efficiencies in primary–final–useful energy transformations. Misspecification in the link between energy use and the economy underplays the role of energy use and efficiency in economic growth. In this work, we develop and implement the Macroeconometric Resource Consumption model for Portugal (MARCO-PT), 1960–2014. Based on the post-Keynesian framework developed for the United Kingdom (MARCO-UK), our model explicitly includes thermodynamic energy efficiency, extending the analysis to the useful stage of energy flows. The model’s stochastic equations are econometrically estimated. The historical influence of key variables—namely thermodynamic energy efficiency—on economic output is assessed through counterfactual simulations and computation of year-by-year output elasticities. The MARCO-PT model adequately describes the historical behavior of endogenous variables. Although its influence has decreased over time, thermodynamic efficiency has consistently been the major contributor to economic growth between 1960–2014, with an average output elasticity of 0.46. Total useful exergy is also a major contributing factor, with an average output elasticity of 0.29. Both have a higher influence than capital, labor, or other energy variables (final energy, prices). An adequate integration of thermodynamic efficiency is thus crucial for macroeconomic models.

Publisher

MDPI AG

Reference103 articles.

1. IEA (2015). Capturing the Multiple Benefits of Energy Efficiency, IEA. Available online: https://www.iea.org/reports/capturing-the-multiple-benefits-of-energy-efficiency.

2. Dean, E., and Harper, M. (2001). New Developments in Productivity Analysis, University of Chicago Press.

3. The Next Generation of the Penn World Table;Feenstra;Am. Econ. Rev.,2015

4. Measuring productivity;Schreyer;OECD Econ. Stud.,2001

5. EU KLEMS growth and productivity accounts: An overview;Timmer;Int. Product. Monit.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3