Characterization of Pore Throat Size Distribution in Tight Sandstones with Nuclear Magnetic Resonance and High-Pressure Mercury Intrusion

Author:

Xu Hongjun,Fan Yiren,Hu Falong,Li Changxi,Yu Jun,Liu Zhichao,Wang Fuyong

Abstract

Characterization of pore throat size distribution (PTSD) in tight sandstones is of substantial significance for tight sandstone reservoirs evaluation. High-pressure mercury intrusion (HPMI) and nuclear magnetic resonance (NMR) are the effective methods for characterizing PTSD of reservoirs. NMR T2 spectra is usually converted to mercury intrusion capillary pressure for PTSD characterization. However, the conversion is challenging in tight sandstones due to tiny pore throat sizes. In this paper, the linear conversion method and the nonlinear conversion method are investigated, and the error minimization method and the least square method are proposed to calculate the conversion coefficients of the linear conversion method and the nonlinear conversion method, respectively. Finally, the advantages and disadvantages of these two different conversion methods are discussed and compared with field case study. The research results show that the average linear conversion coefficients of the 20 tight sandstone core plugs collected from Yanchang Formation, Ordos Basin of China is 0.0133 μm/ms; the average nonlinear conversion coefficient is 0.0093 μm/ms and the average nonlinear conversion exponent is 0.725. Although PTSD converted from NMR spectra by the nonlinear conversion method is wider than that obtained from linear conversion method, the nonlinear conversion method can retain the characteristic of bi-modal distribution in PTSD.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference27 articles.

1. Assessment criteria, main types, basic features and resource prospects of the tight oil in China;Jia;Acta Pet. Sin.,2012

2. Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil;Zou;Bull. Mineral. Petrol. Geochem.,2015

3. A mathematical model for co-current spontaneous water imbibition into oil-saturated tight sandstone: Upscaling from pore-scale to core-scale with fractal approach

4. Current opinions on foam-based hydro-fracturing in deep geological reservoirs

5. FRACTAL CHARACTERIZATION OF TIGHT OIL RESERVOIR PORE STRUCTURE USING NUCLEAR MAGNETIC RESONANCE AND MERCURY INTRUSION POROSIMETRY

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3