Mitigating Impulsive Noise for Wavelet-OFDM Powerline Communication

Author:

Chien Ying-RenORCID,Yu Hao-Chun

Abstract

Advanced metering infrastructure (AMI) is an important application of smart grid communication technology used for the remote monitoring and control of smart meters. Broadband powerline communication (BB-PLC) systems could perhaps be used for AMI; however, impulsive noise (IN) greatly degrades performance. In addition to the fast Fourier transform (FFT)-based orthogonal frequency-division multiplexing (OFDM), IEEE 1901 specifications have defined the other physical layer called wavelet-based OFDM. Even though many existing studies have reported the IN mitigation algorithms for the FFT-based OFDM system, these approaches may not directly apply to the wavelet-OFDM-based PLC systems. In this paper, we propose a robust receiver for PLC systems based on wavelet-OFDM. The proposed receiver comprises a pre-IN mitigation block, an adaptive inverse discrete wavelet transform, and an iterative IN reconstruction block. The iterative cancellation of strong IN samples leads to a gradual improvement in the quality of the received signal. Instead of using the frequency domain approach, we reduce the inter-dependency of the channel estimation and per-subchannel equalization by using the time domain signal processing. Besides, we apply variable step-size adaptive algorithms to reduce the impact of IN during the training processes for the channel estimator and per-subchannel equalizer. In accordance with IEEE 1901 specifications, we built a simulation environment to evaluate the effectiveness of the proposed method. Simulation results demonstrated that conventional blanking devices fall short in terms of IN mitigation, and that the proposed scheme is able to achieve performance values approaching those obtained in cases without IN.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3