A Simplified Model of Coaxial, Multilayer High-Temperature Superconducting Power Cables with Cu Formers for Transient Studies

Author:

Nguyen Thai-ThanhORCID,Lee Woon-Gyu,Lee Seok-Ju,Park Minwon,Kim Hak-ManORCID,Won DuYean,Yoo Jaeun,Yang Hyung Suk

Abstract

Bypassing transient current through copper (Cu) stabilizer layers reduces heat generation and temperature rise of high-temperature superconducting (HTS) conductors, which could protect HTS cables from burning out during transient conditions. The Cu layer connected in parallel with HTS tape layers impacts current distribution among layers and variations of phase resistance in either steady-state or transient conditions. Modeling the multilayer HTS power cable is important for transient studies. However, existing models of HTS power cables have only proposed HTS cables without the use of a Cu-former layer. To overcome this problem, the authors proposed a multilayer HTS power cable model that used a Cu-former layer in each phase for transient study. It was observed that resistance of the HTS conductor increased significantly in the transient state due to a quenching phenomenon, which made the transient current mainly flow into the Cu-former layers. Since resistance of the Cu-former layer has a significant impact on the transient current, detailed modeling of the Cu-former layer is described in this study. The feasibility of the developed HTS cable model is evaluated in the PSCAD/EMTDC program.

Funder

This work was funded by Korea Electric Power Corporation.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. Design Comparisons of Concentric Three-Phase HTS Cables

2. Reliability considerations of electrical insulation systems in superconducting cables;Gholizad;Proc. IEEE Int. Conf. Prop. Appl. Dielectr. Mater.,2018

3. Recent Status and Progress on HTS Cables for AC and DC Power Transmission in Korea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3