Abstract
The existence of high proportional distributed energy resources in energy Internet (EI) scenarios has a strong impact on the power supply-demand balance of the EI system. Decision-making optimization research that focuses on the transient voltage stability is of great significance for maintaining effective and safe operation of the EI. Within a typical EI scenario, this paper conducts a study of transient voltage stability analysis based on convolutional neural networks. Based on the judgment of transient voltage stability, a reactive power compensation decision optimization algorithm via deep reinforcement learning approach is proposed. In this sense, the following targets are achieved: the efficiency of decision-making is greatly improved, risks are identified in advance, and decisions are made in time. Simulations show the effectiveness of our proposed method.
Funder
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献