Particle Simulation Model for Self-Field Magnetoplasmadynamic Thruster

Author:

Li ,Zhang ,Wu ,Cheng ,Du

Abstract

In order to clarify the discharge principle of the self-field magnetoplasmadynamic thruster (MPDT), a two-dimensional axisymmetric particle-in-cell/Monte Carlo collision (PIC/MCC) model is proposed. The spatial distribution and the collision characteristics of discharge plasma were calculated using this model. In addition, the influence of the operation parameters on the plasma was analyzed including the voltage and mass flow rate. The effectiveness of the model was verified by comparison to the experimentally induced magnetic field. It was found that the electrons were mainly accelerated by the electric field in the cathode sheath and the electric field shielding effect of plasma was obvious in the bulk plasma region. Due to the pinch effect, the charged particles were constrained near the cathode. The results of the present work implied that the PIC/MCC model provides an approach to investigate the plasma distribution and a kinetic description of particles for the discharge of the self-field MPDT.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. Anode power deposition in quasisteady magnetoplasmadynamic thrusters

2. Anode power deposition in MPD thrusters;Gallimore;J. Propuls. Power.,1993

3. Energy deposition in low-power coaxial plasma thrusters;Myers;J. Propuls. Power.,1990

4. Current Distribution on the Electrodes of MPD Arcjets;Itsuro;AIAA J.,1982

5. Numerical Simulation of Self-Field MPD Thrusters;Michael;NASA Contractor Rep.,1991

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3