Type 2 Nep1-Like Proteins from the Biocontrol Oomycete Pythium oligandrum Suppress Phytophthora capsici Infection in Solanaceous Plants

Author:

Yang Kun,Dong Xiaohua,Li Jialu,Wang Yi,Cheng Yang,Zhai YingORCID,Li Xiaobo,Wei Lihui,Jing MaofengORCID,Dou Daolong

Abstract

As a non-pathogenic oomycete, the biocontrol agent Pythium oligandrum is able to control plant diseases through direct mycoparasite activity and boosting plant immune responses. Several P. oligandrum elicitors have been found to activate plant immunity as microbe-associated molecular patterns (MAMPs). Necrosis- and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are a group of MAMPs widely distributed in eukaryotic and prokaryotic plant pathogens. However, little is known about their distribution and functions in P. oligandrum and its sister species Pythium periplocum. Here, we identified a total of 25 NLPs from P. oligandrum (PyolNLPs) and P. periplocum (PypeNLPs). Meanwhile, we found that PyolNLPs/PypeNLPs genes cluster in two chromosomal segments, and our analysis suggests that they expand by duplication and share a common origin totally different from that of pathogenic oomycetes. Nine PyolNLPs/PypeNLPs induced necrosis in Nicotiana benthamiana by agroinfiltration. Eight partially purified PyolNLPs/PypeNLPs were tested for their potential biocontrol activity. PyolNLP5 and PyolNLP7 showed necrosis-inducing activity in N. benthamiana via direct protein infiltration. At sufficient concentrations, they both significantly reduced disease severity and suppressed the in planta growth of Phytophthora capsici in solanaceous plants including N. benthamiana (tobacco), Solanum lycopersicum (tomato) and Capsicum annuum (pepper). Our assays suggest that the Phytophthora suppression effect of PyolNLP5 and PyolNLP7 is irrelevant to reactive oxygen species (ROS) accumulation. Instead, they induce the expression of antimicrobial plant defensin genes, and the induction depends on their conserved nlp24-like peptide pattern. This work demonstrates the biocontrol role of two P. oligandrum NLPs for solanaceous plants, which uncovers a novel approach of utilizing NLPs to develop bioactive formulae for oomycete pathogen control with no ROS-caused injury to plants.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Agricultural Science and Technology Innovation Fund

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3