Modified Cuttlefish Swarm Optimization with Machine Learning-Based Sustainable Application of Solid Waste Management in IoT

Author:

Al Duhayyim Mesfer1

Affiliation:

1. Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 16273, Saudi Arabia

Abstract

The internet of things (IoT) paradigm roles an important play in enhancing smart city tracking applications and managing city procedures in real time. The most important problem connected to smart city applications has been solid waste management, which can have adverse effects on society’s health and environment. Waste management has developed a challenge faced by not only evolving nations but also established and developed counties. Solid waste management is an important and stimulating problem for environments across the entire world. Therefore, there is the need to develop an effective technique that will remove these problems, or at least decreases them to a minimal level. This study develops a modified cuttlefish swarm optimization with machine learning-based solid waste management (MCSOML-SWM) in smart cities. The MCSOML-SWM technique aims to recognize different categories of solid wastes and enable smart waste management. In the MCSOML-SWM model, a single shot detector (SSD) model allows effectual recognition of objects. Then, a deep convolutional neural network-based MixNet model was exploited to produce feature vectors. Since trial-and-error hyperparameter tuning is a tedious process, the MCSO algorithm was applied for automated hyperparameter tuning. For accurate waste classification, the MCSOML-SWM technique applies support vector machine (SVM) in this study. A comprehensive set of simulations demonstrate the improved classification performance of the MCSOML-SWM model with maximum accuracy of 99.34%.

Funder

Deanship of Scientific Research at Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3