Sustainable Application of Automatically Generated Multi-Agent System Model in Urban Renewal

Author:

Liang Zixin1ORCID,Várady Géza1ORCID,Zagorácz Márk Balázs1

Affiliation:

1. Faculty of Engineering and Information Technology, University of Pécs, 7624 Pécs, Hungary

Abstract

As cities expand, many old towns face the threat of being renovated or demolished. In recent years, the drawbacks of extensive urban renewal have become increasingly apparent, and the focus of urban development is gradually shifting from efficiency to quality. This study aims to combine urban renewal with emerging technologies to address the dilemma between efficiency and quality in urban renewal. The study found that algorithm models based on graph theory, topology, and shortest path principles neglect the influence of internal states and visual features on pedestrian activity, resulting in lower simulation accuracy. Although incorporating internal states and visual features into the core of the algorithm further improved the simulation accuracy, the model operates in a 3D environment with lower efficiency. To address the problems of insufficient simulation accuracy and low efficiency, this study proposes a dynamic pedestrian activity model based on a multi-agent system and incorporating visual features. The model simulates pedestrian daily activity paths using pheromones and virtual sensors as the core, and it was found that using Visibility Graph Analysis could accurately divide pheromones in the environment, thus obtaining more accurate simulation results. Subsequently, based on the optimized pedestrian model’s agent activity rules and dynamic pheromone theory, a model for automatically generating road paving in urban renewal projects was developed, and the generated results were verified for their rationality through design practice. This technology can effectively promote urban renewal and the preservation of historic neighborhoods, providing technical support for achieving sustainable urban development.

Funder

Faculty of Engineering and Information Technology, University of Pécs, Hungary

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3