Analysis of Spatiotemporal Aggregation of Land Use Change Processes Considering the Shape of Land Units

Author:

Liang Ming12ORCID,Nie Pin3,Luo Rong4,Ni Jianhua12ORCID

Affiliation:

1. School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China

2. Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China

3. Hunan Land and Resources Planning Institute, Changsha 410007, China

4. Anhui Nanchuang Ecological Technology Co., Ltd., Hefei 230088, China

Abstract

The processes of land use and cover change (LUCC) are highly diverse and complex, being heavily influenced by natural factors, economic factors, and other related factors. These changes have a significant impact on ecological environments and landscapes, and serve as a reflection of human activity, limited by natural factors. As a result, LUCC has been widely studied across multiple scientific disciplines. In particular, considerable progress has been made with regard to traditional methods of analyzing land use structures, which focus on the overall differences in the land use structure in each spatiotemporal snapshot. However, these methods have overlooked the continuity in the evolution of each land use unit between different snapshots, impeding the development of a comprehensive model for the spatiotemporal evolution of land use processes. In this work, land use change process (LUCP)—constructed using multiple land use data points from different points in time—was employed as the basis to develop a method to measure the spatiotemporal distance between irregular land patches in evolution sequences based on LUCP. Furthermore, the spatiotemporal distribution model was analyzed using Monte Carlo simulation and measurements of the shortest spatiotemporal distance of LUCP. This work employs land use data for Huainan in China, a typical coal resource city, from 2008 to 2017 for an empirical study. A typical kind of spatiotemporal evolution of LUCP (evolution from farmland to grassland within any two years) is evaluated. Taking into account the shape of land use units, the spatiotemporal distances between irregular evolutionary sequences are measured using buffer-based superposition. The results show that the expected mean nearest neighbor distance for the irregularly evolving sequence of land use units is 0.085 in the completely random CSR model, whereas the mean nearest neighbor distance is 0.037 in the real observation model. These results indicate that such LUCPs have generally shown a spatiotemporal aggregation pattern over the past 10 years. However, since the z-score is 1.03, which is in the range of −1.65 to 1.65, this aggregation pattern is not statistically significant. These experiments demonstrate the validity of using the method proposed herein to study similar problems. The results of this work provide valuable insight into the spatiotemporal evolution process of land use units, which could be instrumental in exploring the potential spatiotemporal model of LUCP evolution.

Funder

Key Research and Development Project of Anhui Province

Natural Science Foundation of Anhui Province

Natural Science Research Project of Colleges and Universities of Anhui Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3