Experimental Study of Simultaneous Charging and Discharging Process in Thermocline Phase Change Heat Storage System Based on Solar Energy

Author:

Xi Xinming1,Zhang Zicheng1,Wei Huimin1,Chen Zeyu1,Du Xiaoze1ORCID

Affiliation:

1. Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China

Abstract

As a renewable energy power generation method, concentrating solar power generation has a broad application prospect. Weather and fluctuation significantly affect the output power of concentrating solar power generation. A heat storage system can stabilize this fluctuation and generate continuous and stable power. Therefore, the research on heat storage systems is of great significance to the development of concentrating solar power generation. This paper mainly studies the operating characteristics of the heat storage system based on solar energy in simultaneous charging, the influence in the change in solar radiation intensity on the charging power and the discharging outlet temperature, and the feasibility of the heat storage tank as an inertial link to stabilize the fluctuation in solar energy and the discharging outlet temperature. In this study, an experimental system for heat storage was established, in which solar energy was used as the heat source, water was used as the heat transfer fluid, and paraffin was used as the phase change heat storage material. When the initial temperature is 50 °C and the charging flow rate is maintained at 0.7 m3/h, at the same time the discharging flow rate is 0.1 m3/h, 0.3 m3/h, and 0.5 m3/h, respectively. The results show that when the solar radiation intensity is lower than 548 W/m2, the curve of heat storage power is almost parallel to the curve of solar radiation intensity; when the solar radiation intensity is lower than 535 W/m2, the moving direction of the thermocline will change; the average discharging outlet temperature in each case is higher than the phase change temperature of the phase change material and this system can continuously supply hot water at more than 69 °C for more than 3 h 32 min; and increasing the discharging flow rate will increase the whole charging and discharging time, thicken the thermocline, and disturb the temperature field in the tank. The experimental analysis will be conducive to profoundly understanding the operation characteristics of the thermocline heat storage tank under the solar heat source and has reference value for the subsequent design of a more efficient heat storage system.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference28 articles.

1. Wu, H. (2019). Numerical Simulation and Optimization on Energy Storage Properties of Packed Bed Latent Heat Thermal Energy Storage. [Master’s Thesis, North China Electric Power University].

2. Dynamic Simulations on Simultaneous Charging/Discharging Process of Water Thermocline Storage Tank;Wang;Proc. CSEE,2019

3. Dufie, J.A., and Beckman, W.A. (1974). Solar Energy Thermal Processes, John Wiley & Sons.

4. Proceedings of the workshop on solar energy storage subsystems for the heating and cooling of buildings;Lilleleht;NASASTI/Recon Tech. Rep. N,1975

5. Numerical and experimental study of spherical capsules packed bed latent heat storage system;Ismail;Appl. Therm. Eng.,2002

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3